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ATOMIC COHERENT STATE FOR A SYSTEM
OF THREE-LEVEL ATOMS

Bogolubov N.N., Jr., Shumovsky A.S.
Tran Quang’; Vo Hong Anh

Atomic coherent states for an ensemble of three-
level atoms are defined. Some their properties and
possible applications are discussed.

The investigation has been performed at the Labo-
ratory of Theoretical Physics, JINR.

KorepeHTHOE COCTOAHME CUCTEMBI
TPexXypoOBHEBHX aTOMOB

Boromo6or H.H. /mn./ u gp.

llocTpoeHrl aTOMHBIE KOTEepeHTHHE COCTOAHHMA CHCTEeMbl
TPEXYPOBHEBLIX ATOMOB, O6CYXOAlOTCA HEKOTOpble UX CBOI—
CTBa M BO3MOXHhiE HX NPAKTHYECKHE IpHMeHeHMs .

Pafora BhmonHeHa B Jla6opaTopuu TeopeTHYeCKol du3u-
xku OUAH.

Many problems in quantum optics can be dealt with in
terms of the interaction of an ensemble of three-level:
atoms with a transverse electromagnetic field. The model
consisting of an ensemble of N identical three-level
atoms driven by resonant external fields was used for des-—
cribing the collective behaviour of a double resonance’l’
resonant Raman scatterlng’? -5/ superfluorescence °~%. fo-
ur-wave mixing/12/ On the analogy of the atomic coherent
states for the ensemble of two-level atoms ?~ 11" the co-
gerent states for the ensemble of three-level atoms will
be defined in this paper. Their propertles and possible

~applications are discussed too.

For the case when the effect of a different spatial
position of atoms is ingnored, the ensemble of N three—
level atoms can be characterized by_collective angular
momentum operators as follows:Jij=k liiiijg (i,i=1,2,3).

They obey the commutation relations
[JXJ, .;.1]=J..’a-“./ 81‘]’

we introduce the elgenstates of the operators JIPJ11+J22
and operator of the total number of atoms N= J11+J22+333
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N|P.Q> =N|P,Q>
J,,/P.Q> =Q|P.Q >
Jy, + Ip)IPa> =P{P,Q>, (1)

where O0<P <N, 0<£Q < P.
It is easy to show that:

P-Q)! LQimy %p
iPQD'[(P-Q m)! ar ) |PQ-m> 2)
P, ®-Qin) . Q% pqg._
21 P.Q> =1 T (Q-n)!] |P,Q n>“ (3)
(N-P) (P—Q— Hn
X 1P,a> = (M=RU_  B-QR 1%p,x Q5. 59

N-P-k) {(P-Q)!

Analogously to the coherent states for the system of, two-
level atoms’®/ we introduce the coherent states for the
system of three-level atoms in the form:

Bi
I#B>~A/2 12#23 10,0 > ©

%y N %oop X P!
= A 2 PR L. St v N z P Q ,
A &\ Fanar 6% p.a>

where ¢ and B run over the complex plane and A is a nor-
malization factor. We have

<BoplpB>=A" M p) 2+ 10 f BN
and hence the normalization factor has the form
Aul. 1B)=(+ pf2+ [u]2182)Y (N

The overlap integral between two states I.al ,81 and
[#2 Bs> is
-—/2

< Bty g By =K g 1B DA (gl 18, Wit A+ BB (8)
whence

1< ﬂl,ulwg.ﬁglifhuﬂ.lﬁlw A Xpgl B, D Loty + i o5 B 1
From definition (6) one can find

(BIyz 311 )|p.B> =0

(da) ~Jp2) 0, B>=0 (9
(-Il‘— Jgo=Jdgg)p.B>=10
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These equations, together with
Nig,B>=N|u, B>

specify uniquely the coherent states. The coherent states
lu,B> form minimum-uncertainty packets. The uncertainty
relation can be defined, for example, in terms of the set
of operators

| _ i -

Ti=gWav I Jy=3- U350, 3, =3 Us-3,)
These three observables obey a commutation relation
(3,.3,0-1i1,
whence they have the uncertainty property

2 2
(AT 7T F> Loar )
It is easy to show that the equality sign holds for the
coherent state |u,B> that is therefore a minimum—uncer-
tainty state.

Let us now consider the completeness properties of the
coherent states (6). Using the relation

oo M—1

X dx - m -1)1(-1)1
0 (1+x)m+n (m+n -1)

and the completeness of states |P,Q> one obtains

N+2)N+1) 42 43 el® lu B> < Byl
- fa% ﬁ(1+|#!2+!“1%m2)3 tn,B><B,ul (10)
P
-3 5 |Pas< a.p|-1
P =0 Q=0

Then, the expansion of an arbitrary state |P,Q> foolows

%

_(N+2)(N+1) N1
[PQ>- 1z @G
2 +xPox Q
[ %% " u*"p . B> an

el 24 juf 2 B12) S+ B '

Thus, analogously to the coherent spin state’19/ and atomic
coherent state for two-level atoms P11/ ye define the
atomic coherent state for the system of three-level atoms.
The coherent atomic states |u,8> possess a number of pro-
perties: (i) The states are defined by a unitary trans-

, J Hdag .
formation operator eB §2e acting on the ground state;

(ii) the states obey simple eigenvalue equations;
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(iii) these states are nonorthogonal and overcomplete;
(iv) minimum-uncertainty relations for noncommuting ope-
rators can be constructed within the atomic coherent sta-
tes. It is easy to see that the defined atomic coherent
states (6) are suitable to describe the resonant interac-
tion of a set of three-level atoms with a classical fields.
In the atomic coherent state the master equation produces
a number of differential equations. Take, for example, the
problem of resonant Ramant scattering ®’ (see the figure).
Such a system is described by the reduced atomic density
operators that obey the master equation ®’

l ; .
.(.;_ie- = ~iQfcos a (Jyo+ Ty )+ sina Joz+ Ig5),p]
Yo Uopdyy ~pdyy T o+ HCY : (12)
t Vag Ugapdag— plygdg, + HCL),

where 2y,, and 2y,5 are raliative spontaneous transition
probabilities per unit time for a single atom to change
from the lTevel [2> to |1~ and from 2> to !3 >, respecti-
vely; Q- @2+ 02)% and tga= Q,'Q,. Here @ and Q,
are the Rabi frequencies for the atomic transitions from
the level {2~ to |1> and from '2>to !3>. respectively.

It is easy to show that in the atomic coherent state
the master equation (12) reduces to

oW B B :
.)p _ l([l*ff & __'(_)_, - lg*z,i_ - T"(?""')
dr dpu* ap* Jdf
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Fig. Schematic represen-

“x rll . tation of three-level

13> system interacting with
resonant incident and

p !1:> scattered coherent waves.
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where

P B Bt )=<Bplple.B> . AGp.iB])
Y Y
r=Qt and g1=-—él, g2=——£-1-.

Equation (13) can be considered as the Fokker-Planck
equation for the system of three-level atoms in the reso-
nant driving fields.

The investigation of equation (13) and the corresponding
cooperative properties of resonant Raman scattering will
be represented in other publications.

The authors thank Fam Le Kien and Cao Long Var for valu-
able discussions.
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